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I. INTRODUCTION 

This project used a modified version of the MNIST digits dataset where each image contains 1-5 handwritten digits. The                   
task was to implement a deep neural network capable of performing multi-label classification on the dataset. In order to                   
accomplish this, the approach taken was to split each image in the dataset into sub-images, each containing a single digit.                    
Our neural network was then trained on the individual digit images and their corresponding labels from the training set.                   
Neural network selection was done based on the results of the parameter tuning process, which conducted a grid search                   
that evaluates the best overall combination of activation function, optimizer, learning rate and batch size. The best three                  
models from the parameter tuning process were tested further and verified by doing 5-fold cross validation. The final                  
neural network consists of three 2D convolution layers with a filter size of 32, and an ELU activation function. This is                     
followed by two dense layers, one with an ELU activation function, and the final with a sigmoid activation function, that                    
ensures output is between 0 and 1. In order to construct the predictions for the test set, each image in the test set was split                         
into its corresponding digits and fed to the neural network to make a prediction on each digit image. The default                    
prediction, composed of only 10’s (the non-digit class), was overwritten starting at the front with the neural networks                  
predictions, which resulted in the final prediction label of the test image. This approach yielded results of 99.392%                  
accuracy on the test set. 

II. DATASETS 
 
We used a modified version of the MNIST dataset. The data was composed of sample images that each contained 1-5                    
handwritten digits. The labels set was composed of 5-digit lists that mapped to the 5 possible digits in the corresponding                    
sample image. The dataset contains 11 classes, one for each possible digit, and if the number of digits in an image is less                       
than 5, a blank digit is labeled as 10. As previously mentioned, we implemented a single-label deep neural network that                    
classifies single digits. As a result, data preprocessing was required in-order to split and enhance images into single-digit                  
images. In-order to split the input images, we initially set out to use built-in OpenCV methods that automatically detect                   
digits and draw bounding boxes around them. However, we found that this approach wasn’t accurate and didn’t leverage                  
the fact that the digits in the input images are aligned along the middle horizontal axis of the image. Moreover, the                     
OpenCV approach was less optimizable than a custom implementation. For these reasons, we decided to implement our                 
own split image method. Before starting our sliding window operation, we apply a kernel blur which has a smoothing                   
effect on the edges of the digits. Then, to increase the definition of each digit, we apply binary window thresholding which                     
sets pixels with intensity greater than a given upper threshold to 255 (white), and lower than a given lower threshold to 0                      
(black). It is to be noted that these image manipulation techniques are only used for digit detection in the sliding window                     
loop. Once we discover the coordinates and dimensions of a given digit, we extract it from the original unaltered image                    
rather than the smoothed and thresholded image. Our approach is simple and fast, as it only consists of sliding a window                     
from left-to-right along the middle horizontal axis of the image. The window has a dimension of 10 by 16 pixels, which                     
was deduced to be the average size of a digit by trial and error. To ensure that we don’t detect duplicate digits, our                       
technique pays special attention to the pixel intensity values of the left side of the sliding window. We only extract a digit                      
from the window if at any given iteration, the pixels on the left side of the current window are not all black, while the                        
pixels on the left side of the previous window were all black. 
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Abstract. The purpose of this project was to implement a deep neural network in-order to perform                
multi-label classification on a modified version of the MNIST dataset. The dataset is made up of                
sample images which contain 1-5 handwritten digits that can each be classified into 11 classes. Our                
multi-label classification approach was to split the input image into individual digit images, which              
we then feed into a deep neural network trained on single handwritten digit recognition. We               
performed grid search to obtain the best three models, and then conducted 5-fold cross validation to                
determine the best of the three. The final accuracy obtained on the test data was 99.392%. 



III. RESULTS 

The initial model structure chosen was based on an existing model found online that was capable of performing                  
multi-label image classification on a modified version on the MNIST fashion dataset, where four clothing items appeared                 
in the dataset [1]. This neural network was chosen for two reasons; the first being its successful classification using an                    
image dataset, the second being its potential for adaptability to support training directly on the modified MNIST digits                  
dataset rather than breaking the images into its corresponding digits. Given that the initial approach of splitting the dataset                   
images worked with high accuracy, it was not necessary to attempt the alternative. The model itself was extensively                  
modified. Three 2D convolution layers were employed instead of initial five in-order to reduce model complexity and                 
chances of overfitting the training data. Moreover, following the convolution layers, a flatten layer was added in-order to                  
linearize data prior to the dense layer. An additional dense layer was added in-order to improve classification                 
performance, as well as a dropout for regularization with a probability of 0.5. These modifications improved validation                 
accuracy by up to 2% in our testing. In all testing, our selected loss function was categorical cross entropy. Moreover, the                     
number of epochs was set to 50 in all tests, with early-stopping implemented in-order to prevent overfitting. The patience                   
for early-stop was set to 5 and is based on the validation loss. Further optimization of the model was done during the                      
hyperparameter tuning process, which yielded the three best performing models based on activation function, optimizer,               
learning rate and batch size. Optimization was done using Talos, a Tensorflow specific library that performs grid search                  
on a provided set of parameters. The primary convenience of Talos is that it provides built-in visualization features for the                    
results of the grid search. The results of the optimization process are shown in Table A.1 in the Appendix. The top three                      
models from the parameter grid search were then further validated using 5-fold cross validation to select the final model.                   
The results of the 5-fold cross validation were that the best model parameters are an ELU activation function, stochastic                   
gradient descent optimizer, learning rate of 0.01 and batch size of 64. The ELU activation function is applied to the                    
convolution layers, as well as the first dense layer. Moreover, final training occurred on a test-validation split of 7.5%.                   
The primary reasoning for using a small number is that 20% of the dataset is already being used for testing. Indeed, there                      
are 14,0000 elements in the test set and 56,000 elements in the training set. As a result, this leaves us with an overall data                        
split of 26% for testing and validation and 74% for training when factoring in our validation samples. With that being                    
said, Figures A.1. highlights the change in validation and training accuracy vs the number of epochs during training.                  
Figure A.2. does the same but compares it to the loss. For Figure A.1, as expected, we notice that the accuracy for both                       
training and validation increases logarithmically throughout the epochs, and seems to plateau at a certain point. For Figure                  
A.2, as expected, the loss for both training and validation decreases logarithmically until it plateaus. 

Using the optimal model discussed above, we were able to achieve 99.392% accuracy on the test data. This accuracy is                    
lower than the validation accuracy of the model, and one possible explanation for this is the actual split image process.                    
Whilst unlikely, it is possible that the algorithm fails to detect all digits in an image, or possibly even overestimates it.                     
This does not cause issues in-terms of mapping predictions to their corresponding labels, but may result in incorrect                  
predictions. As an example, we may only output [3,5,10,10,10] in an image instead of [3,5,6,10,10] because the six was                   
not correctly extracted from the split image function. When determining validation and training accuracy, the above                
prediction would be partially correct as all digits are correct aside from the six. In the test set, we expect the entire                      
sequence to be correct, so this would be an incorrect prediction from a test perspective. 

IV. DISCUSSION & CONCLUSION 

Our approach of breaking down the images into their subsequent digits ended up being a very successful approach for this                    
project, yielding a high accuracy on the test set. For future reference, it would be better to improve the performance of the                      
split image function in-order to reduce data loss. Whilst this is not necessarily problematic from a training perspective, it                   
can lead to increased error with test sets, particularly because the task at hand is to identify an entire sequence in an image,                       
and not just a single digit. Our grid search for tuning parameters was extremely helpful in finding the best parameters for                     
the model, and cross-validation helped us validate which model was best of the top three. One area of improvement for the                     
future could be regarding the patience for early stop. We observed a variety of different behaviours and accuracy                  
depending on what the patience was set to. It represents a delicate balance, where we do not want to overfit the data, but at                        
the same time do not want to train a model with sub-optimal performance. Figures A.1. and A.2. can also help indicate                     
that we possibly should have stopped sooner. One potential approach here could be to treat it as a hyperparameter and to                     
perform grid search, as well as cross-validation in-order to determine an optimal value.  
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Julien: Worked on neural network model, parameter tuning, and contributed to everything else. 
Jay: Worked on splitting images, neural network models, and contributed to everything else. 
Rayan: Worked on neural network model, parameter tuning, and contributed to everything else. 
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VII. APPENDIX 
 

 
Table A.1. Raw results of hyperparameter optimization through grid search.The optimal three results are highlighted in orange. 5-fold 

cross-validation was performed on these collections of parameters in-order to select the optimal model. Finally, the optimal configuration in CV was 
selected based on the highest average validation accuracy.  
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Figure A.1. Change in training and validation accuracy as a function of the number of epochs.  

 

 
Figure A.2. Change in training and validation loss as a function of the number of epochs.  
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