

 1

Abstract

The purpose of this project was to implement a pipeline
capable of detecting, localizing and tracking individuals
walking across a scene from a fixed viewpoint. The dataset
consists of frames from the campus and Stadtmitte videos.
Classification was done by extracting local binary patterns
from a subject, then training a model using an SVM
classifier. The mean accuracy for classification was 99.6%
after 5-fold cross-validation. Localization was done
through the use of a sliding window and non-maximum
suppression and a mean IoU of 15.2% was reported across
validation sets. Finally, two tracking methods were used:
optical flow and kernelized correlation filter (KCF).
Optical flow was tested on the campus and Stadtmitte
training videos with and without relocalization. The mean
IoU for the campus video with relocalization was 0.39%,
and without relocalization was 0.46%. The mean IoU for
the Stadtmitte video with relocalization was 0.23%, and
without relocalization was 0.52%. Similarly, the KCF
algorithm was tested on the campus and Stadtmitte training
videos. The mean IoU for the campus video was 0.35%
while the mean IoU for the Stadtmitte video was 0%.

1. Introduction
Human detection is an interesting task because it builds a

foundation for many complex tasks that are possible with
the aid of computer vision. From autonomous vehicles,
security, to sports analytics, the concepts discussed in this
project build the foundation for many interesting areas of
this quickly expanding field. In order to perform all the
tasks set out for this project, it was necessary to divide it
into four tasks: data extraction, classification, detection,
localization and tracking. The following methods were
implemented: In order to perform classification, we used
local binary patterns (LBP) and a support vector machine
(SVM) classifier. Once we had a working classifier, we
then went on to do detection and localization. The detection
and localization portion of our pipeline encompassed using
a variable size sliding window in order to detect people in
the images as well as non-maximum suppression in-order
to select the best bounding boxes. Finally, to complete the

tracking portion of our pipeline we took advantage of both
optical flow and KCF.

2. Data
The main purpose of the data portion of this project is to

acquire and format the data so it can be used for
classification purposes. The data provided in this case
includes the frames from multiple videos as well as the
ground truth for those frames. The ground truth indicates
the bounding boxes that surround the people in each frame.
Two videos were used for training purposes, TUD-Campus
and TUD-Stadtmitte.

The data required for classification was the training data
as well as the training labels. Training data is essentially a
list of person and non-person image patches extracted from
the video frames. Labels are a list of zeros and ones for each
of the non-person and person patches respectively. An
additional consideration in extracting the data was making
sure the data could be easily separable with respect to the
people in each video. In order to produce correct cross
validation accuracies in the classification, the same people
must either be in the training set or the validation set. The
reason data must be split according to the people in each
video is to ensure that the validation accuracy reflects the
performance of the classifier on unseen data.

The approach taken to get the data began with extracting
the person patches from all the frames. This involved
parsing the ground truth files to get a dictionary of frame
keys mapped to a list of bounding boxes for that frame. We
then iterated through all the frames and extracted the person
patches according to the bounding boxes. It is worth noting
that some bounding boxes had negative coordinates or
coordinates that exceeded the image size, so we adjusted
these bounding boxes so that they fell within the frame’s
bounds. Extracting non-person patches was more complex.
A sliding window approach was used to extract the
non-person patches. The sliding window used was a
random size that fell within the range of the largest and
smallest dimensions of the bounding boxes in that frame.
At each iteration of the sliding window, we evaluated
whether the window intersected with any of the bounding
boxes. In the case that it did not intersect with any bounding
boxes, it was successfully added to a list of non-person
patches. Generating labels for the data was also trivial
given that we extracted two separate lists of person patches
and non-person patches.

Detecting, Localizing, and Tracking People

Lara Kollokian

McGill University
260806317

Rayan Osseiran
McGill University

260803963

Julien Philips
McGill University

260804197

Benji Szwimer
McGill University

260804222

Marie Vu
McGill University

260807903

 2

The final consideration for the data was to be able to split
the data for cross validation in classification. The approach
taken to do this was to remap the ID of each person in each
video to an ID that encapsulates both the person’s ID as
well as the video it came from. In addition, each non-person
patch was assigned a unique ID. Doing this allowed us to
have a list of IDs for all the person and non-person patches.
This list of IDs is later passed into sklearn’s GroupKFold
as the groups parameter, ensuring that the same person is
not in both the training and validation sets.

The final result of the data section is the training data,
training labels and the corresponding ids for all the data.
The training data consists of approximately four thousand
samples, with forty percent of that data being person
patches and the other sixty percent being nonperson
patches.

3. Classification
Many approaches were explored when building the

human classifier. Initially, the classifier would extract SIFT
descriptors, which would then be clustered via k-means or
expectation-maximization. Once clustered, a histogram is
made using bag of words representation and is then fed to a
classifier. Whilst this approach should have produced good
results in theory, the true results were far from perfect.
Indeed, the accuracy ranged from as low as 20% to as high
as 73% which depended on how the dataset was generated.

To that effect, we attempted to explore other approaches.
The next contender was histogram of oriented gradients
(HoG). One of the primary advantages of this approach was
that it would reduce the number of intermediary steps as it
directly produces a feature vector that can be passed to a
classifier. Unfortunately, when testing on the original
full-sized images, Google Colab would crash due to a lack
of memory. Indeed, storing thousands of large histograms
takes up space very quickly. Moreover, assuming we did
manage to get around this issue, we would still likely need
to use principal component analysis (PCA) in-order to
reduce the dimensions of the feature vectors. Finally, HoG
would also require the images to be padded which is
something that we do not do.

This left us with our final approach which takes
advantage of local binary patterns. Like HoG, it produces a
feature vector that can directly be fed to a classifier.
Moreover, while it is memory hungry, it requires that
images are converted to grayscale which likely heavily
reduces the dimensionality. Images do not need to be
resized for LBP and they can also be left as the same size,
as the histogram will always be the same size regardless of
the image size.

In addition to an SVM based classifier, we also made use
of gradient boosting as an alternative. One aspect of
gradient boosting that we were particularly attracted to was
gradient descent, as it can be a very powerful optimization
tool. Moreover, it is very accurate out of the box with

limited tuning. In general, it is robust to overfitting
compared to many other classifiers, however, attention still
needs to be paid when optimizing the hyperparameters as
the number of estimators needs to be kept in check [1].

3.1. SVM Results

The SVM approach produces reliably high accuracy and
the results from cross validation are listed in Table 1. As
noted in the data section, cross-validation was done through
the use of Sklearn’s GroupKFold which allows us to
ensure that no subjects in the validation set appear in the
training set. It is encouraging to see a high precision, as
precision tells us what portion of our results are correct.

Metric Value (%)
Mean Accuracy 99.6
Standard Deviation 0.2
Precision 99.6
Recall 99.6

Table 1: Cross-validation results for SVM

Parameters for SVM as well as LBP were selected via
grid-search (a custom implementation). The optimal
parameters are highlighted in Table 2. Note that the number
of points in LBP is not optimized via grid search due to the
exponential increase in runtime when adding a new
hyperparameter. Instead, the number of points is directly
based on the radius. The decided formula is 8 * radius,
primarily because many sources display a radius of 1 and 8
points as a standard configuration [2][3]. Moreover, we
observe that both typically scale together hence allowing
one to be inferred from the other.

Parameter Value
C (SVM) 1.0
Kernel (SVM) rbf
Radius (LBP) 1.0
Number of Points (LBP) 8
Method (LBP) default

Table 2: Optimal SVM parameters selected by grid search.

Note that for grid-search, we do not simply select the
option with the highest mean accuracy, but instead try to
select a combination that has high accuracy, but with
parameters that seem less likely to overfit. As an example,
the top candidate for SVM had a regularization parameter
(C) of 10. We opted to select the next option with a
regularization parameter of 1 for safety reasons. A sample
run of the classifier is shown in Figures 1 and 2. Figure 1
shows 5 patches that the classifier predicted as human,
whilst Figure 2 shows 5 patches that the classifier predicted
as non-human. In each patch the number above is the

 3

ground truth. 1 indicates human whilst 0 indicates
non-human.

Figure 1: Patches that the SVM classifier predicted as human. The
number above each patch is the ground truth.

Figure 2: Patches that the SVM classifier predicted as non-human.
The number above each patch is the ground truth.

3.2. Gradient Boosting Results

Gradient boosting (GB) performed very similarly to
SVM. We suspect that this is the case because we selected a
non-linear kernel for SVM. Had we selected a linear kernel,
we would expect gradient boosting to do a better job. Once
again, the classifier was evaluated with grid-search and
5-fold cross-validation. The results of cross-validation are
illustrated in Table 3 and the optimal hyperparameters from
grid-search are listed in Table 4.

Metric Value (%)
Mean Accuracy 99.5
Standard Deviation 0.7
Precision 99.9
Recall 99.9

Table 3: Cross-validation results for gradient boosting

Parameter Value
Learning rate (GB) 0.1

Number of estimators
(GB)

100

Radius (LBP) 1.5
Number of Points (LBP) 12
Method (LBP) default

Table 4: Optimal gradient boosting parameters selected by grid
search.

A sample run of the classifier is shown in Figures 3 and
4. Figure 3 shows 5 patches that the classifier predicted as
human, whilst Figure 4 shows 5 patches that the classifier
predicted as non-human.

Figure 3: Patches that the gradient boosting classifier predicted as
human. The number above each patch is the ground truth.

Figure 4: Patches that the gradient boosting classifier predicted as
non-human. The number above each patch is the ground truth.

3.3. Weaknesses

Unfortunately, this classifier is not without its
weaknesses. While the dataset after processing contains
roughly 3900 elements, it is important to realize that all of
these patches come from the same 2 videos, meaning they
consist of the same or similar people over and over again.
More importantly, this means that it consists of the same
overall environment and weather conditions.
Unfortunately, simply adding more videos does not
necessarily produce the result we’d expect. This can
actually harm performance in localization. Moreover, it is

 4

easy to accidentally overfit to non-person patches. Indeed,
the classifier could fail to properly classify foreign
environments that are completely different from its training
environment. A good example of this is the Sunnyday
dataset where the time of day is dusk and there are many
glass window reflections. To that effect, the main point
here is that it is important to look at the context the
classifier is being used in i.e., in this case localization and
tracking. Moreover, it would be worth looking into
combining LBP and HoG in the future as many papers cite
it as a very strong feature detector for pedestrian detection
[4][5]. This is not too surprising as we feel that HoG is
better than LBP at getting the overall shape of an object,
whereas LBP is fully focused on textures.

4. Localization
In order to perform detection and localization we decided

to go with the following approach: In order to localize
people in the frame, we used a sliding window method in
which different window sizes were chosen. We then
iterated through the image with these sliding-windows and
at each iteration, we used our classifier to determine
whether or not a person was present in the window. If a
person is detected, we store the patch in a list. Once the
entire image is iterated through with these varying sliding
window sizes, we then apply non-maximum suppression on
the bounding boxes that were found from this sliding
window approach. Non maximum suppression allowed us
to select a single bounding box for the people out of the
many overlapping bounding boxes that were detected.

In localization, the dataset consists of frames, instead of
patches like in classification. For the purpose of
localization, we used the training videos (which consists of
250 frames), however, we worked to ensure that the IoU
was not calculated using any subjects that the classifier was
trained on. This is a rather complex process. Briefly, all
bounding boxes in the ground truth are checked. The image
from the bounding box is then reconstructed. If that patch
exists in the train set, we store it so that we can remove its
matching predicted bounding box later. Otherwise, we will
use this for calculating the IoU. Once we know the images
of interest in the ground truth, we also need to discard the
frames from our localization prediction that are predicting
people from the training set. To do this, we iterate over our
predicted bounding boxes for each frame. For each box, we
compare them one by one to the boxes in the previously
stored ground truth that contains patches from the training
set. If the IoU between the two boxes is over 0.5, we can
safely conclude that the prediction box is predicting a
person from the training set. Therefore, we discard the box
from predictions. Finally, we can move on to calculating
the IoU based only on subjects from the validation set of the
classifier. Note that false positives are left alone and will be
given an IoU of 0.

4.1. Results

Localization results were once again validated using
GroupKFold. While it makes limited sense to do cross
validation here because we have already trained our model,
the primary benefit is that it handles splitting into 5
validation sets. With that being said, it’s worth noting that
our split does not always successfully get an IoU for all five
folds. This is intentional behaviour to prevent errors.
Suppose all the images in the validation split contain
subjects in the classifier’s training set. We cannot
accurately predict an IoU without including training boxes,
so discard it. Moreover, we perform grid-search in-order to
select the best IoU threshold for non-maximum
suppression. Briefly, that decides what the IoU cut-off is
for removing a frame. Indeed, this is our evaluation metric
for non-maximum suppression as our predictions do not
have confidence scores attached with them. The threshold
that was selected via grid search is 10%. The results for the
validation are reported in Table 5.

Metric Value (%)
Mean IoU 15.4%
Standard Deviation 9.4%

Table 5: Optimal gradient boosting parameters selected by grid
search.

One potential explanation for the high standard deviation
is that we are not counting boxes that include subjects the
classifier was trained on. Suppose in that case that we have
a frame with 4 people and that 3 were in the training set. If
we have a bounding box over the other person, as well as a
false positive, that is going to give us a far lower IoU than
considering all boxes. Figure 5 shows a sample of
localization results.

Figure 5: A sample localization result.

 5

4.2. Weaknesses

As the previous section may indicate, IoU in localization
is not particularly good. However, as we can see in Figure
5, the results are not too bad from a human perspective.
With that being said, IoU places a heavy emphasis on
getting the bounding boxes perfectly and our model with 3
fixed bounding box sizes is never going to accurately
achieve that (at least in its current configuration).
Moreover, this also points to issues with our classifier.
Indeed, because LBP is a texture-based feature detector, we
see many instances where half a person, or a person’s leg is
considered a person. This points to a need to better capture
the overall shape of our classes instead of just textures.
Finally, one localization issue is also that the classifier will
detect every single person, whether far or close. We don’t
necessarily want to place bounding boxes on someone very
far in the background. This is a non-trivial issue to solve as
we would likely need to use stereo vision techniques
in-order to understand the depth of objects.

5. Tracking
Tracking is a real challenge in computer vision, because

of things like occlusion, rotation, shadows, drift and objects
that appear or disappear from the frame [6], which is why
this portion of the pipeline was so interesting. The tracking
step starts off with localization. We use our localization
algorithm to predict the bounding boxes for the first frame
in a video and use tracking to follow the moving objects in
the video. This can be done strictly with tracking, or by
relocalizing every few frames to detect new images that
appear. We tested out two different tracking methods:
optical flow and KCF.

5.1. Optical Flow

The method we implemented for Optical Flow tracking
was using the Shi-Tomasi Corner detector to find good
features to track in a frame, and then the Lucas-Kanade
Optical Flow to track them from frame to frame.

The Shi-Tomasi feature tracker uses the eigenvalues of
the second moment matrix to find good features to track in
a frame. According to Shi-Tomasi, good features are the
ones whose motion can be estimated reliably [7]. The
OpenCV implementation of the algorithm,
cv2.goodFeaturesToTrack(), allows you to input a
mask to specify the region of the image where the corners
should be detected. We decided to create a mask in the
shape of each frame where the specified region is the area
within the bounding box for that frame. You can see in
Figure 6 and 7 below what that would look like. Figure 6
generates a mask that would look like Figure 7.

Figure 6: A frame of the campus video with one bounding box.

Figure 7: Mask corresponding to the frame in Figure 6.

After running Shi-Tomasi corner detection on a frame,

we used Lucas-Kanade optical flow to calculate the
updated positions of the tracked corners from the present
frame to the next frame. Lucas-Kanade works by warping
image patches around the tracked corners to find the
transformation between two frames [7]. This essentially
gave us two sets of mapped points from the present frame to
the next frame. In order to calculate the position of the new
bounding box, we calculated the average displacement of
all the points from the present frame to the next frame. This
gave us an average displacement in x and in y for the
features within that bounding box. We then applied that
transformation to the bounding box to get the new
coordinates for the next frame.

 6

Figure 8: Example of the displacement of points between two
frames, as well as the previous and next bounding boxes

In Figure 8 above, you can see the displacement of the
points detected by Shi-Tomasi and Lucas Kanade
demonstrated by the coloured lines. You can also see the
previous bounding box in blue, and the next bounding box
in red.

We also incorporated relocalization into our tracking
method. We wanted to make sure to catch new objects that
appear within the video, and also correct any accumulated
error from the tracking. We experimented by trial and error
to find a good interval of frames after which to relocalize
and we found that 20 was a good value. If we relocalized
more often than this, the video looked very choppy and
there was no smooth motion of the bounding boxes
between frames.

5.2. Optical Flow Results

Given that validation was done using 5-fold cross
validation, we didn’t have a specific validation set for the
training videos. Therefore, the mean IoU was computed
over the entire campus and Stadtmitte training videos, both
with and without relocalizing every 20 frames.

The mean IoU for the campus video with relocalization
every 20 frames was 0.0039, and without relocalization was
0.0046. Figure 9 is a plot of the IoU per frame of the video
both with and without localization

Figure 9: Plot of the mean IoU per frame of the campus video with
and without relocalization.

The mean IoU for the Stadtmitte video with
relocalization every 20 frames was 0.0023, and without
relocalization was 0.0052. Figure 10 is a plot of the IoU per
frame of the video both with and without localization.

Figure 10: Plot of the mean IoU per frame of the Stadtmitte video
with and without relocalization.

The IoU results for both videos are much lower than
expected, and we’re not too sure why. A part of it is likely
because the size of the bounding boxes we predict don’t
match the size of the ground truth bounding boxes, which

 7

introduces a lot of error. Although the IoU numbers aren’t
too promising, the visual results look really good. You can
see by viewing the video titled
“optical_flow_tracking.mp4” included with the
submission.

5.3. KCF Tracking

OpenCV offers 8 different tracking algorithms that can
be used to track any desired object. We decided to test out
the KCF tracker, which stands for kernelized correlation
filter. This algorithm claims to be fast but doesn’t handle
occlusion well. This uses kernel trick and circulant matrices
to significantly improve the computation speed [8].

To handle tracking multiple objects,
cv2.MultiTracker_create() was used. This class is
used to track multiple objects using a specified tracker
algorithm.

To start, we first localize and detect the first frame that
forms the video. This gives us the initial positions of the
people located on the video. From there, we iterate through
these bounding boxes' locations and add them to the
MultiTracker.

From there, we go through all of the image frames and
use update to update the tracking status of the current
frame. We also append all of these new coordinates to an
array so that we can display the bounding boxes on the
frames, which is done by iterating through all the frames
and drawing boxes with cv2.rectangle on each frame.

Figure 11: KCF algorithm on the training set.

Figure 12: KCF algorithm on the test set.

Figures 11 and 12 shows that the algorithm is not super

accurate. Some boxes show false negatives, and some
people are also missing. Additionally, the sizes of the
bounding boxes are too big compared to the size of the
person detected.

5.4. KCF Results

Similarly, to Optical flow, we didn’t have a specific
validation set for the training videos and computed the
mean IoU over the entire campus and Stadtmitte training
videos.

The mean IoU for the campus video using the KCF
algorithm was 0.003465 and the plot of the mean IoU per
frame of the video is shown in Figure 13.

Figure 13: Mean IoU for the Campus Video with KCF algorithm.

 8

The mean IoU for the campus video using the KCF

algorithm was 0.0 and the plot of the mean IoU per frame of
the video is shown in Figure 14.

Figure 14: Mean IoU for the Stadtmitte Video with KCF
algorithm.

As observed, the results of IoU are very low. Looking at
our videos for the KCF, it is pretty expected. However, it is
interesting that the mean IoU for Stadtmitte is 0.0 as there
seemed to be at least one detection when we tested the
algorithm on that set. The large size of our bounding boxes
would have influenced the result as they aren’t close to
those of the ground truth bounding boxes. The results can
be viewed in the following: “kcf_tracking.mp4”.

6. Conclusion
The objective of this project was to implement a complete
pipeline to detect, localize, and track individuals walking
across a scene from a fixed viewpoint. We implemented
classification, localization and tracking functions using
data from the campus and Stadtmitte videos. Different
methods were tested, and hyperparameters were tuned
through grid search and cross-validation. Our results were
promising overall, but the performance metrics weren’t too
optimistic for some of the steps. As previously mentioned,
attempting to combine HoG and LBP would be a promising
change to implement for the future. This would combine
LBP’s strengths with textures with HoGs ability to capture
shapes as well as textures well. It would also help balance
out the accuracy of our classifier over person and
non-peron patches. Having a more accurate classifier
would also improve the performance of the rest of the

pipeline. Another potential improvement would be to
consider dynamically resizing bounding boxes around an
object while localizing and tracking, rather than using the
three fixed sizes we currently have in our implementation.
This would improve the IoU results we obtained for
tracking. This was a very large bottleneck in localization
and represents a challenging problem to solve. Finally, a
simple fix to consider as well would be to train on more
data with a fixed reference, which the extra videos do not
have. This would give us more varied environments to
work with which reduces the chances of the classifier
overfitting on a single environment.

References
[1] G. Snow, “Why is boosting less likely to overfit?,”

24-Jan-2017. [Online]. Available:
https://stats.stackexchange.com/questions/257328/why-is-b
oosting-less-likely-to-overfit/257921#257921.

[2] “Local Binary Pattern for texture classification,” scikit-image.
[Online]. Available:
https://scikit-image.org/docs/dev/auto_examples/features_d
etection/plot_local_binary_pattern.html.

[3] A. Rosebrock, “Local Binary Patterns with Python &
OpenCV,” PyImageSearch, 07-Dec-2015. [Online].
Available:
https://www.pyimagesearch.com/2015/12/07/local-binary-p
atterns-with-python-opencv/.

[4] W. Park, D. Kim, Suryanto, C. Lyuh, T. M. Roh and S. Ko,
"Fast human detection using selective block-based
HOG-LBP," 2012 19th IEEE International Conference on
Image Processing, Orlando, FL, USA, 2012, pp. 601-604,
doi: 10.1109/ICIP.2012.6466931.

[5] G. Gan and J. Cheng, "Pedestrian Detection Based on
HOG-LBP Feature," 2011 Seventh International Conference
on Computational Intelligence and Security, Sanya, China,
2011, pp. 1184-1187, doi: 10.1109/CIS.2011.262.

[6] T. Arbel, Class Lecture, Topic: “Lecture 19 - Motion
Analysis.” ECSE 415, Faculty of Engineering, McGill
University, Montreal, QC, Mar. 2021.

[7] T. Arbel, Class Lecture, Topic: “Lecture 21 - Tracking.”
ECSE 415, Faculty of Engineering, McGill University,
Montreal, QC, Mar. 2021.

[8] S. Yadav and S. Payandeh, "Understanding Tracking
Methodology of Kernelized Correlation Filter," 2018 IEEE
9th Annual Information Technology, Electronics and Mobile
Communication Conference (IEMCON), Vancouver, BC,
Canada, 2018, pp. 1330-1336, doi:
10.1109/IEMCON.2018.8614990.

