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Abstract 

 
The purpose of this project was to implement a pipeline 
capable of detecting, localizing and tracking individuals 
walking across a scene from a fixed viewpoint. The dataset 
consists of frames from the campus and Stadtmitte videos. 
Classification was done by extracting local binary patterns 
from a subject, then training a model using an SVM 
classifier. The mean accuracy for classification was 99.6% 
after 5-fold cross-validation. Localization was done 
through the use of a sliding window and non-maximum 
suppression and a mean IoU of 15.2% was reported across 
validation sets. Finally, two tracking methods were used: 
optical flow and kernelized correlation filter (KCF). 
Optical flow was tested on the campus and Stadtmitte 
training videos with and without relocalization. The mean 
IoU for the campus video with relocalization was 0.39%, 
and without relocalization was 0.46%. The mean IoU for 
the Stadtmitte video with relocalization was 0.23%, and 
without relocalization was 0.52%. Similarly, the KCF 
algorithm was tested on the campus and Stadtmitte training 
videos. The mean IoU for the campus video was 0.35% 
while the mean IoU for the Stadtmitte video was 0%. 
 
 

1. Introduction 
Human detection is an interesting task because it builds a 

foundation for many complex tasks that are possible with 
the aid of computer vision. From autonomous vehicles, 
security, to sports analytics, the concepts discussed in this 
project build the foundation for many interesting areas of 
this quickly expanding field. In order to perform all the 
tasks set out for this project, it was necessary to divide it 
into four tasks: data extraction, classification, detection, 
localization and tracking. The following methods were 
implemented: In order to perform classification, we used 
local binary patterns (LBP) and a support vector machine 
(SVM) classifier. Once we had a working classifier, we 
then went on to do detection and localization. The detection 
and localization portion of our pipeline encompassed using 
a variable size sliding window in order to detect people in 
the images as well as non-maximum suppression in-order 
to select the best bounding boxes. Finally, to complete the 

tracking portion of our pipeline we took advantage of both 
optical flow and KCF. 

2. Data 
The main purpose of the data portion of this project is to 

acquire and format the data so it can be used for 
classification purposes. The data provided in this case 
includes the frames from multiple videos as well as the 
ground truth for those frames. The ground truth indicates 
the bounding boxes that surround the people in each frame. 
Two videos were used for training purposes, TUD-Campus 
and TUD-Stadtmitte. 

The data required for classification was the training data 
as well as the training labels. Training data is essentially a 
list of person and non-person image patches extracted from 
the video frames. Labels are a list of zeros and ones for each 
of the non-person and person patches respectively. An 
additional consideration in extracting the data was making 
sure the data could be easily separable with respect to the 
people in each video. In order to produce correct cross 
validation accuracies in the classification, the same people 
must either be in the training set or the validation set. The 
reason data must be split according to the people in each 
video is to ensure that the validation accuracy reflects the 
performance of the classifier on unseen data. 

The approach taken to get the data began with extracting 
the person patches from all the frames. This involved 
parsing the ground truth files to get a dictionary of frame 
keys mapped to a list of bounding boxes for that frame. We 
then iterated through all the frames and extracted the person 
patches according to the bounding boxes. It is worth noting 
that some bounding boxes had negative coordinates or 
coordinates that exceeded the image size, so we adjusted 
these bounding boxes so that they fell within the frame’s 
bounds. Extracting non-person patches was more complex. 
A sliding window approach was used to extract the 
non-person patches. The sliding window used was a 
random size that fell within the range of the largest and 
smallest dimensions of the bounding boxes in that frame. 
At each iteration of the sliding window, we evaluated 
whether the window intersected with any of the bounding 
boxes. In the case that it did not intersect with any bounding 
boxes, it was successfully added to a list of non-person 
patches. Generating labels for the data was also trivial 
given that we extracted two separate lists of person patches 
and non-person patches. 
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The final consideration for the data was to be able to split 
the data for cross validation in classification. The approach 
taken to do this was to remap the ID of each person in each 
video to an ID that encapsulates both the person’s ID as 
well as the video it came from. In addition, each non-person 
patch was assigned a unique ID. Doing this allowed us to 
have a list of IDs for all the person and non-person patches. 
This list of IDs is later passed into sklearn’s GroupKFold 
as the groups parameter, ensuring that the same person is 
not in both the training and validation sets. 

The final result of the data section is the training data, 
training labels and the corresponding ids for all the data. 
The training data consists of approximately four thousand 
samples, with forty percent of that data being person 
patches and the other sixty percent being nonperson 
patches.  

3. Classification 
Many approaches were explored when building the 

human classifier. Initially, the classifier would extract SIFT 
descriptors, which would then be clustered via k-means or 
expectation-maximization. Once clustered, a histogram is 
made using bag of words representation and is then fed to a 
classifier. Whilst this approach should have produced good 
results in theory, the true results were far from perfect. 
Indeed, the accuracy ranged from as low as 20% to as high 
as 73% which depended on how the dataset was generated.  

To that effect, we attempted to explore other approaches. 
The next contender was histogram of oriented gradients 
(HoG). One of the primary advantages of this approach was 
that it would reduce the number of intermediary steps as it 
directly produces a feature vector that can be passed to a 
classifier. Unfortunately, when testing on the original 
full-sized images, Google Colab would crash due to a lack 
of memory. Indeed, storing thousands of large histograms 
takes up space very quickly. Moreover, assuming we did 
manage to get around this issue, we would still likely need 
to use principal component analysis (PCA) in-order to 
reduce the dimensions of the feature vectors. Finally, HoG 
would also require the images to be padded which is 
something that we do not do. 

This left us with our final approach which takes 
advantage of local binary patterns. Like HoG, it produces a 
feature vector that can directly be fed to a classifier. 
Moreover, while it is memory hungry, it requires that 
images are converted to grayscale which likely heavily 
reduces the dimensionality. Images do not need to be 
resized for LBP and they can also be left as the same size, 
as the histogram will always be the same size regardless of 
the image size. 

In addition to an SVM based classifier, we also made use 
of gradient boosting as an alternative. One aspect of 
gradient boosting that we were particularly attracted to was 
gradient descent, as it can be a very powerful optimization 
tool. Moreover, it is very accurate out of the box with 

limited tuning. In general, it is robust to overfitting 
compared to many other classifiers, however, attention still 
needs to be paid when optimizing the hyperparameters as 
the number of estimators needs to be kept in check [1]. 

3.1. SVM Results 

The SVM approach produces reliably high accuracy and 
the results from cross validation are listed in Table 1. As 
noted in the data section, cross-validation was done through 
the use of Sklearn’s GroupKFold which allows us to 
ensure that no subjects in the validation set appear in the 
training set. It is encouraging to see a high precision, as 
precision tells us what portion of our results are correct. 
 

Metric Value (%) 
Mean Accuracy 99.6 
Standard Deviation 0.2 
Precision 99.6 
Recall 99.6 

Table 1: Cross-validation results for SVM 
 

Parameters for SVM as well as LBP were selected via 
grid-search (a custom implementation). The optimal 
parameters are highlighted in Table 2. Note that the number 
of points in LBP is not optimized via grid search due to the 
exponential increase in runtime when adding a new 
hyperparameter. Instead, the number of points is directly 
based on the radius. The decided formula is 8 * radius, 
primarily because many sources display a radius of 1 and 8 
points as a standard configuration [2][3]. Moreover, we 
observe that both typically scale together hence allowing 
one to be inferred from the other. 
 

Parameter Value 
C (SVM) 1.0 
Kernel (SVM) rbf 
Radius (LBP) 1.0 
Number of Points (LBP) 8 
Method (LBP) default 

Table 2: Optimal SVM parameters selected by grid search. 
 

Note that for grid-search, we do not simply select the 
option with the highest mean accuracy, but instead try to 
select a combination that has high accuracy, but with 
parameters that seem less likely to overfit. As an example, 
the top candidate for SVM had a regularization parameter 
(C) of 10. We opted to select the next option with a 
regularization parameter of 1 for safety reasons. A sample 
run of the classifier is shown in Figures 1 and 2. Figure 1 
shows 5 patches that the classifier predicted as human, 
whilst Figure 2 shows 5 patches that the classifier predicted 
as non-human. In each patch the number above is the 
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ground truth. 1 indicates human whilst 0 indicates 
non-human.  
 

 
Figure 1: Patches that the SVM classifier predicted as human. The 
number above each patch is the ground truth. 
 
 

 
Figure 2: Patches that the SVM classifier predicted as non-human. 
The number above each patch is the ground truth. 

3.2. Gradient Boosting Results 

Gradient boosting (GB) performed very similarly to 
SVM. We suspect that this is the case because we selected a 
non-linear kernel for SVM. Had we selected a linear kernel, 
we would expect gradient boosting to do a better job. Once 
again, the classifier was evaluated with grid-search and 
5-fold cross-validation. The results of cross-validation are 
illustrated in Table 3 and the optimal hyperparameters from 
grid-search are listed in Table 4. 
 

Metric Value (%) 
Mean Accuracy 99.5 
Standard Deviation 0.7 
Precision 99.9 
Recall 99.9 

Table 3: Cross-validation results for gradient boosting 
 

Parameter Value 
Learning rate (GB) 0.1 

Number of estimators 
(GB) 

100 

Radius (LBP) 1.5 
Number of Points (LBP) 12 
Method (LBP) default 

Table 4: Optimal gradient boosting parameters selected by grid 
search. 
 

A sample run of the classifier is shown in Figures 3 and 
4. Figure 3 shows 5 patches that the classifier predicted as 
human, whilst Figure 4 shows 5 patches that the classifier 
predicted as non-human.  

 
Figure 3: Patches that the gradient boosting classifier predicted as 
human. The number above each patch is the ground truth. 

 
Figure 4: Patches that the gradient boosting classifier predicted as 
non-human. The number above each patch is the ground truth. 

3.3. Weaknesses 

Unfortunately, this classifier is not without its 
weaknesses. While the dataset after processing contains 
roughly 3900 elements, it is important to realize that all of 
these patches come from the same 2 videos, meaning they 
consist of the same or similar people over and over again. 
More importantly, this means that it consists of the same 
overall environment and weather conditions. 
Unfortunately, simply adding more videos does not 
necessarily produce the result we’d expect. This can 
actually harm performance in localization. Moreover, it is 
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easy to accidentally overfit to non-person patches. Indeed, 
the classifier could fail to properly classify foreign 
environments that are completely different from its training 
environment. A good example of this is the Sunnyday 
dataset where the time of day is dusk and there are many 
glass window reflections. To that effect, the main point 
here is that it is important to look at the context the 
classifier is being used in i.e., in this case localization and 
tracking. Moreover, it would be worth looking into 
combining LBP and HoG in the future as many papers cite 
it as a very strong feature detector for pedestrian detection 
[4][5]. This is not too surprising as we feel that HoG is 
better than LBP at getting the overall shape of an object, 
whereas LBP is fully focused on textures. 

4. Localization 
In order to perform detection and localization we decided 

to go with the following approach: In order to localize 
people in the frame, we used a sliding window method in 
which different window sizes were chosen. We then 
iterated through the image with these sliding-windows and 
at each iteration, we used our classifier to determine 
whether or not a person was present in the window. If a 
person is detected, we store the patch in a list. Once the 
entire image is iterated through with these varying sliding 
window sizes, we then apply non-maximum suppression on 
the bounding boxes that were found from this sliding 
window approach. Non maximum suppression allowed us 
to select a single bounding box for the people out of the 
many overlapping bounding boxes that were detected.  

In localization, the dataset consists of frames, instead of 
patches like in classification. For the purpose of 
localization, we used the training videos (which consists of 
250 frames), however, we worked to ensure that the IoU 
was not calculated using any subjects that the classifier was 
trained on. This is a rather complex process. Briefly, all 
bounding boxes in the ground truth are checked. The image 
from the bounding box is then reconstructed. If that patch 
exists in the train set, we store it so that we can remove its 
matching predicted bounding box later. Otherwise, we will 
use this for calculating the IoU. Once we know the images 
of interest in the ground truth, we also need to discard the 
frames from our localization prediction that are predicting 
people from the training set. To do this, we iterate over our 
predicted bounding boxes for each frame. For each box, we 
compare them one by one to the boxes in the previously 
stored ground truth that contains patches from the training 
set. If the IoU between the two boxes is over 0.5, we can 
safely conclude that the prediction box is predicting a 
person from the training set. Therefore, we discard the box 
from predictions. Finally, we can move on to calculating 
the IoU based only on subjects from the validation set of the 
classifier. Note that false positives are left alone and will be 
given an IoU of 0. 

4.1. Results 

Localization results were once again validated using 
GroupKFold. While it makes limited sense to do cross 
validation here because we have already trained our model, 
the primary benefit is that it handles splitting into 5 
validation sets. With that being said, it’s worth noting that 
our split does not always successfully get an IoU for all five 
folds. This is intentional behaviour to prevent errors. 
Suppose all the images in the validation split contain 
subjects in the classifier’s training set. We cannot 
accurately predict an IoU without including training boxes, 
so discard it. Moreover, we perform grid-search in-order to 
select the best IoU threshold for non-maximum 
suppression. Briefly, that decides what the IoU cut-off is 
for removing a frame. Indeed, this is our evaluation metric 
for non-maximum suppression as our predictions do not 
have confidence scores attached with them. The threshold 
that was selected via grid search is 10%. The results for the 
validation are reported in Table 5.  

 
Metric Value (%) 
Mean IoU 15.4% 
Standard Deviation 9.4% 

Table 5: Optimal gradient boosting parameters selected by grid 
search. 
 

One potential explanation for the high standard deviation 
is that we are not counting boxes that include subjects the 
classifier was trained on. Suppose in that case that we have 
a frame with 4 people and that 3 were in the training set. If 
we have a bounding box over the other person, as well as a 
false positive, that is going to give us a far lower IoU than 
considering all boxes. Figure 5 shows a sample of 
localization results. 

 

 
Figure 5: A sample localization result. 
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4.2. Weaknesses 

As the previous section may indicate, IoU in localization 
is not particularly good. However, as we can see in Figure 
5, the results are not too bad from a human perspective. 
With that being said, IoU places a heavy emphasis on 
getting the bounding boxes perfectly and our model with 3 
fixed bounding box sizes is never going to accurately 
achieve that (at least in its current configuration). 
Moreover, this also points to issues with our classifier. 
Indeed, because LBP is a texture-based feature detector, we 
see many instances where half a person, or a person’s leg is 
considered a person. This points to a need to better capture 
the overall shape of our classes instead of just textures. 
Finally, one localization issue is also that the classifier will 
detect every single person, whether far or close. We don’t 
necessarily want to place bounding boxes on someone very 
far in the background. This is a non-trivial issue to solve as 
we would likely need to use stereo vision techniques 
in-order to understand the depth of objects. 

5. Tracking 
Tracking is a real challenge in computer vision, because 

of things like occlusion, rotation, shadows, drift and objects 
that appear or disappear from the frame [6], which is why 
this portion of the pipeline was so interesting. The tracking 
step starts off with localization. We use our localization 
algorithm to predict the bounding boxes for the first frame 
in a video and use tracking to follow the moving objects in 
the video. This can be done strictly with tracking, or by 
relocalizing every few frames to detect new images that 
appear. We tested out two different tracking methods: 
optical flow and KCF. 

5.1. Optical Flow 

The method we implemented for Optical Flow tracking 
was using the Shi-Tomasi Corner detector to find good 
features to track in a frame, and then the Lucas-Kanade 
Optical Flow to track them from frame to frame. 

The Shi-Tomasi feature tracker uses the eigenvalues of 
the second moment matrix to find good features to track in 
a frame. According to Shi-Tomasi, good features are the 
ones whose motion can be estimated reliably [7]. The 
OpenCV implementation of the algorithm, 
cv2.goodFeaturesToTrack(), allows you to input a 
mask to specify the region of the image where the corners 
should be detected. We decided to create a mask in the 
shape of each frame where the specified region is the area 
within the bounding box for that frame. You can see in 
Figure 6 and 7 below what that would look like. Figure 6 
generates a mask that would look like Figure 7. 

 

 
Figure 6: A frame of the campus video with one bounding box. 

 

 
Figure 7: Mask corresponding to the frame in Figure 6. 

 
After running Shi-Tomasi corner detection on a frame, 

we used Lucas-Kanade optical flow to calculate the 
updated positions of the tracked corners from the present 
frame to the next frame. Lucas-Kanade works by warping 
image patches around the tracked corners to find the 
transformation between two frames [7]. This essentially 
gave us two sets of mapped points from the present frame to 
the next frame. In order to calculate the position of the new 
bounding box, we calculated the average displacement of 
all the points from the present frame to the next frame. This 
gave us an average displacement in x and in y for the 
features within that bounding box. We then applied that 
transformation to the bounding box to get the new 
coordinates for the next frame.  
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Figure 8: Example of the displacement of points between two 
frames, as well as the previous and next bounding boxes 
 

In Figure 8 above, you can see the displacement of the 
points detected by Shi-Tomasi and Lucas Kanade 
demonstrated by the coloured lines. You can also see the 
previous bounding box in blue, and the next bounding box 
in red. 

We also incorporated relocalization into our tracking 
method. We wanted to make sure to catch new objects that 
appear within the video, and also correct any accumulated 
error from the tracking. We experimented by trial and error 
to find a good interval of frames after which to relocalize 
and we found that 20 was a good value. If we relocalized 
more often than this, the video looked very choppy and 
there was no smooth motion of the bounding boxes 
between frames.  

5.2. Optical Flow Results 

Given that validation was done using 5-fold cross 
validation, we didn’t have a specific validation set for the 
training videos. Therefore, the mean IoU was computed 
over the entire campus and Stadtmitte training videos, both 
with and without relocalizing every 20 frames.  

The mean IoU for the campus video with relocalization 
every 20 frames was 0.0039, and without relocalization was 
0.0046. Figure 9 is a plot of the IoU per frame of the video 
both with and without localization 
 

 
Figure 9: Plot of the mean IoU per frame of the campus video with 
and without relocalization. 
 

The mean IoU for the Stadtmitte video with 
relocalization every 20 frames was 0.0023, and without 
relocalization was 0.0052. Figure 10 is a plot of the IoU per 
frame of the video both with and without localization. 
 

 
Figure 10: Plot of the mean IoU per frame of the Stadtmitte video 
with and without relocalization. 
 

The IoU results for both videos are much lower than 
expected, and we’re not too sure why. A part of it is likely 
because the size of the bounding boxes we predict don’t 
match the size of the ground truth bounding boxes, which 
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introduces a lot of error. Although the IoU numbers aren’t 
too promising, the visual results look really good. You can 
see by viewing the video titled 
“optical_flow_tracking.mp4” included with the 
submission. 

5.3. KCF Tracking 

OpenCV offers 8 different tracking algorithms that can 
be used to track any desired object. We decided to test out 
the KCF tracker, which stands for kernelized correlation 
filter. This algorithm claims to be fast but doesn’t handle 
occlusion well. This uses kernel trick and circulant matrices 
to significantly improve the computation speed [8]. 

To handle tracking multiple objects, 
cv2.MultiTracker_create() was used. This class is 
used to track multiple objects using a specified tracker 
algorithm.  

To start, we first localize and detect the first frame that 
forms the video. This gives us the initial positions of the 
people located on the video. From there, we iterate through 
these bounding boxes' locations and add them to the 
MultiTracker.  

From there, we go through all of the image frames and 
use update to update the tracking status of the current 
frame. We also append all of these new coordinates to an 
array so that we can display the bounding boxes on the 
frames, which is done by iterating through all the frames 
and drawing boxes with cv2.rectangle on each frame.  
 

 
Figure 11: KCF algorithm on the training set. 

 

 
Figure 12: KCF algorithm on the test set. 

 
Figures 11 and 12 shows that the algorithm is not super 

accurate. Some boxes show false negatives, and some 
people are also missing. Additionally, the sizes of the 
bounding boxes are too big compared to the size of the 
person detected. 

5.4. KCF Results 

Similarly, to Optical flow, we didn’t have a specific 
validation set for the training videos and computed the 
mean IoU over the entire campus and Stadtmitte training 
videos. 

The mean IoU for the campus video using the KCF 
algorithm was 0.003465 and the plot of the mean IoU per 
frame of the video is shown in Figure 13. 
 
 

 
Figure 13: Mean IoU for the Campus Video with KCF algorithm. 
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The mean IoU for the campus video using the KCF 

algorithm was 0.0 and the plot of the mean IoU per frame of 
the video is shown in Figure 14.  
 

 
Figure 14: Mean IoU for the Stadtmitte Video with KCF 
algorithm. 
 

As observed, the results of IoU are very low. Looking at 
our videos for the KCF, it is pretty expected. However, it is 
interesting that the mean IoU for Stadtmitte is 0.0 as there 
seemed to be at least one detection when we tested the 
algorithm on that set. The large size of our bounding boxes 
would have influenced the result as they aren’t close to 
those of the ground truth bounding boxes. The results can 
be viewed in the following: “kcf_tracking.mp4”. 

6. Conclusion 
The objective of this project was to implement a complete 
pipeline to detect, localize, and track individuals walking 
across a scene from a fixed viewpoint. We implemented 
classification, localization and tracking functions using 
data from the campus and Stadtmitte videos. Different 
methods were tested, and hyperparameters were tuned 
through grid search and cross-validation. Our results were 
promising overall, but the performance metrics weren’t too 
optimistic for some of the steps. As previously mentioned, 
attempting to combine HoG and LBP would be a promising 
change to implement for the future. This would combine 
LBP’s strengths with textures with HoGs ability to capture 
shapes as well as textures well. It would also help balance 
out the accuracy of our classifier over person and 
non-peron patches. Having a more accurate classifier 
would also improve the performance of the rest of the 

pipeline. Another potential improvement would be to 
consider dynamically resizing bounding boxes around an 
object while localizing and tracking, rather than using the 
three fixed sizes we currently have in our implementation. 
This would improve the IoU results we obtained for 
tracking. This was a very large bottleneck in localization 
and represents a challenging problem to solve. Finally, a 
simple fix to consider as well would be to train on more 
data with a fixed reference, which the extra videos do not 
have. This would give us more varied environments to 
work with which reduces the chances of the classifier 
overfitting on a single environment. 
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